Sunday, January 5, 2025

Towards the intentional multifunctionality of urban green infrastructure: a paradox of choice? – npj Urban Sustainability

Must read

  • Benedict, M. A., McMahon, E. T. & Fund, M. A. T. C. Green Infrastructure: Linking Landscapes and Communities. (Island Press, 2012).

  • Browder, G., Ozment, S., Rehberger Bescos, I., Gartner, T. & Lange, G.-M. Integrating Green and Gray: Creating Next Generation Infrastructure. https://doi.org/10.46830/wrirpt.18.00028. (World Resource Institute, 2019).

  • Folke, C. Resilience: the emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).

    Article 

    Google Scholar
     

  • Partelow, S. A review of the social-ecological systems framework: applications, methods, modifications, and challenges. Ecol. Soc. 23 (2018).

  • Matsler, A. M., Meerow, S., Mell, I. C. & Pavao-Zuckerman, M. A. A ‘green’ chameleon: exploring the many disciplinary definitions, goals, and forms of “green infrastructure”. Landsc. Urban Plan. 214, 104145 (2021).

    Article 

    Google Scholar
     

  • Cassin, J. History and development of nature-based solutions: concepts and practice. in Nature-Based Solutions and Water Security 19–34 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-819871-1.00018-X.

  • Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Grimm, N. B., Cook, Elizabeth M., Hale, Rebecca L. & Iwaniec, David M. A broader framing of ecosystem services in cities. in The Routledge Handbook of Urbanization and Global Environmental Change (eds Karen C. Seto, William D. Solecki and Corrie A.) Griffith (Routledge, 2015).

  • Hobbie, S. E. & Grimm, N. B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190124 (2020).

    Article 

    Google Scholar
     

  • Shandas, V., Matsler, A. M., Caughman, L. & Harris, A. Towards the implementation of green stormwater infrastructure: perspectives from municipal managers in the Pacific Northwest. J. Environ. Plan. Manag. 63, 959–980 (2020).

    Article 

    Google Scholar
     

  • World Water Development Report 2018. UN-Water https://www.unwater.org/publications/world-water-development-report-2018.

  • Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. https://zenodo.org/record/3553579 (2019).

  • Global Center on Adaptation. State and Trends in Adaptation Reports 2021 and 2022: Executive Summaries and Syntheses. https://gca.org/wp-content/uploads/2023/01/GCA_State-and-Trends-in-Adaptation-2022_Fullreport.pdf (2022).

  • McPhillips, L. E. & Matsler, A. M. Temporal evolution of green stormwater infrastructure strategies in three US Cities. Front. Built Environ. 4, 1–14 (2018).

    Article 

    Google Scholar
     

  • World Bank. World Bank https://www.worldbank.org/en/topic/urbandevelopment/overview (2022).

  • Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B. & Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Mechanisms and applications of green infrastructure practices for stormwater control: a review. J. Hydrol. 568, 626–637 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Santamouris, M. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Balany, F., Ng, A. W., Muttil, N., Muthukumaran, S. & Wong, M. S. Green infrastructure as an urban heat island mitigation strategy—a review. Water 12, 3577 (2020).

    Article 

    Google Scholar
     

  • Browder, G., Ozment, S., Rehberger Bescos, I., Gartner, T. & Lange, G.-M. Integrating Green and Gray. (Washington, DC: World Bank and World Resources Institute, 2019).

  • Chatzimentor, A., Apostolopoulou, E. & Mazaris, A. D. A review of green infrastructure research in Europe: challenges and opportunities. Landsc. Urban Plan. 198, 103775 (2020).

    Article 

    Google Scholar
     

  • Filazzola, A., Shrestha, N. & MacIvor, J. S. The contribution of constructed green infrastructure to urban biodiversity: a synthesis and meta-analysis. J. Appl. Ecol. 56, 2131–2143 (2019).

    Article 

    Google Scholar
     

  • Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landsc. Urban Plan. 81, 167–178 (2007).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar
     

  • Almenar, J. B. et al. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 100, 104898 (2021).

    Article 

    Google Scholar
     

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hölting, L., Beckmann, M., Volk, M. & Cord, A. F. Multifunctionality assessments—more than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol. Indic. 103, 226–235 (2019).

    Article 

    Google Scholar
     

  • Kabisch, N., Frantzeskaki, N. & Hansen, R. Principles for urban nature-based solutions. Ambio 51, 1388–1401 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grădinaru, S. R. & Hersperger, A. M. Green infrastructure in strategic spatial plans: evidence from European urban regions.Urban For. Urban Green. 40, 17–28 (2019).

    Article 

    Google Scholar
     

  • World Bank. Biodiversity, Climate Change, and Adaptation: Nature-Based Solutions from the World Bank Portfolio. https://openknowledge.worldbank.org/handle/10986/6216 (2008).

  • Hansen, R. & Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. AMBIO 43, 516–529 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).

    Article 

    Google Scholar
     

  • Suppakittpaisarn, P., Jiang, X. & Sullivan, W. C. Green infrastructure, green stormwater infrastructure, and human health: a review. Curr. Landsc. Ecol. Rep. 2, 96–110 (2017).

    Article 

    Google Scholar
     

  • Joshi, P., Leitão, J. P., Maurer, M. & Bach, P. M. Not all SuDS are created equal: impact of different approaches on combined sewer overflows. Water Res. 191, 116780 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkataramanan, V. et al. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manage. 246, 868–880 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shafique, M., Xue, X. & Luo, X. An overview of carbon sequestration of green roofs in urban areas. Urban For. Urban Green 47, 126515 (2020).

    Article 

    Google Scholar
     

  • Kavehei, E., Jenkins, G., Adame, F. & Lemckert, C. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure. Renew. Sustain. Energy Rev. 94, 1179–1191 (2018).

    Article 

    Google Scholar
     

  • Parker, J. & Simpson, G. D. Public green infrastructure contributes to city livability: a systematic quantitative review. Land 7, 161 (2018).

    Article 

    Google Scholar
     

  • Apfelbeck, B. et al. Designing wildlife-inclusive cities that support human-animal co-existence. Landsc. Urban Plan. 200, 103817 (2020).

    Article 

    Google Scholar
     

  • Hansen, R., Olafsson, A. S., Van Der Jagt, A. P., Rall, E. & Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 96, 99–110 (2019).

    Article 

    Google Scholar
     

  • Pataki, D. E. et al. Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 9, 27–36 (2011).

    Article 

    Google Scholar
     

  • Clark, C., Busiek, B. & Adriaens, P. Quantifying Thermal Impacts of Green Infrastructure: Review and Gaps. 69–77 (Water Environment Federation, 2010).

  • Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–a review. Sustain. Cities Soc. 43, 55–76 (2018).

    Article 

    Google Scholar
     

  • Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30, e02149 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. & Slik, F. Are street trees friendly to biodiversity? Landsc. Urban Plan. 218, 104304 (2022).

    Article 

    Google Scholar
     

  • Sayer, C. D. Conservation of aquatic landscapes: ponds, lakes, and rivers as integrated systems.Wiley Interdiscip. Rev. Water 1, 573–585 (2014).

    Article 

    Google Scholar
     

  • Davis, A. P., Hunt, W. F. & Traver, R. G. Green Stormwater Infrastructure Fundamentals and Design. (John Wiley & Sons, 2022).

  • Probst, N., Bach, P. M., Cook, L. M., Maurer, M. & Leitão, J. P. Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions. Blue-Green Syst 4, 348–376 (2022).

    Article 

    Google Scholar
     

  • Wickes, R., Zahnow, R., Taylor, M. & Piquero, A. R. Neighborhood structure, social capital, and community resilience: longitudinal evidence from the 2011 Brisbane Flood Disaster*: Neighborhood Structure, Social Capital, and Community Resilience. Soc. Sci. Q. 96, 330–353 (2015).

    Article 

    Google Scholar
     

  • McPhearson, T. et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, L. & Jensen, M. B. Green infrastructure for sustainable urban water management: practices of five forerunner cities. Cities 74, 126–133 (2018).

    Article 

    Google Scholar
     

  • SR 814.20 – Federal Act of 24 January 1991 on the Protection of Waters (Waters Protection Act, WPA). https://www.fedlex.admin.ch/eli/cc/1992/1860_1860_1860/en.

  • Wadzuk, B., Gile, B., Smith, V., Ebrahimian, A. & Traver, R. Call for a dynamic approach to GSI maintenance. J. Sustain. Water Built Environ. 7, 02521001 (2021).

    Article 

    Google Scholar
     

  • Zuniga-Teran, A. A., Gerlak, A. K., Mayer, B., Evans, T. P. & Lansey, K. E. Urban resilience and green infrastructure systems: towards a multidimensional evaluation. Curr. Opin. Environ. Sustain 44, 42–47 (2020).

    Article 

    Google Scholar
     

  • Gaffin, S. R., Rosenzweig, C. & Kong, A. Y. Y. Adapting to climate change through urban green infrastructure. Nat. Clim. Change 2, 704–704 (634843008000000000).

  • Aronson, M. F. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).

    Article 

    Google Scholar
     

  • Shi, L. Beyond flood risk reduction: how can green infrastructure advance both social justice and regional impact? Socio-Ecol. Pract. Res. 2, 311–320 (2020).

    Article 

    Google Scholar
     

  • Childers, D. L. et al. Urban Ecological Infrastructure: an inclusive concept for the non-built urban environment. Elem. Sci. Anthr. 7, 46 (2019).

    Article 

    Google Scholar
     

  • US EPA. What is green infrastructure? https://www.epa.gov/green-infrastructure/what-green-infrastructure (2015).

  • Nguyen, T. T. et al. Implementation of a specific urban water management—sponge city. Sci. Total Environ. 652, 147–162 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fletcher, T. D. et al. SUDS, LID, BMPs, WSUD and more—the evolution and application of terminology surrounding urban drainage. Urban Water J. 12, 525–542 (2015).

    Article 

    Google Scholar
     

  • Taguchi, V. J. et al. It is not easy being green: Recognizing unintended consequences of green stormwater infrastructure. Water 12, 522 (2020).

    Article 

    Google Scholar
     

  • Bertram, C. & Rehdanz, K. The role of urban green space for human well-being. Ecol. Econ. 120, 139–152 (2015).

    Article 

    Google Scholar
     

  • Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green 14, 760–771 (2015).

    Article 

    Google Scholar
     

  • Lepczyk, C. A. et al. Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 67, 799–807 (2017).

    Article 

    Google Scholar
     

  • Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. AMBIO 43, 413–433 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stovin, V. & Ashley, R. SuDS/BMPs/WSUD/SCMs: convergence to a blue-green infrastructure. Urban Water J 16, 403–403 (2019).

    Article 

    Google Scholar
     

  • Brzoska, P. & Spāģe, A. From city- to site-dimension: assessing the urban ecosystem services of different types of green infrastructure. Land 9, 150 (2020).

    Article 

    Google Scholar
     

  • Eggermont, H. et al. Nature-based solutions: new influence for environmental management and research in Europe. GAIA-Ecol. Perspect. ci. Soc. 24, 243–248 (2015).


    Google Scholar
     

  • Lovell, S. T. & Taylor, J. R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 28, 1447–1463 (2013).

    Article 

    Google Scholar
     

  • Liu, Y. et al. A review on effectiveness of best management practices in improving hydrology and water quality: needs and opportunities. Sci. Total Environ. 601–602, 580–593 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Petsinaris, F., Baroni, L. & Georgi, B. Grow-Green compendium of nature-based solutions to address climate and water-related problems in European cities. (Climate-ADAPT, 2020).

  • Pauleit, S. et al. Advancing urban green infrastructure in Europe: outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 40, 4–16 (2019).

    Article 

    Google Scholar
     

  • Haines-Young, R. & Potschin, M. The links between biodiversity, ecosystem services and human well-being. Ecosyst. Ecol. New Synth. 1, 110–139 (2010).

    Article 

    Google Scholar
     

  • Wang, J., Liu, J., Wang, H. & Mei, C. Approaches to multi-objective optimization and assessment of green infrastructure and their multi-functional effectiveness: a review. Water 12, 2714 (2020).

    Article 

    Google Scholar
     

  • Guo, R.-Z., Song, Y.-B. & Dong, M. Progress and prospects of ecosystem disservices: an updated literature review. Sustainability 14, 10396 (2022).

    Article 

    Google Scholar
     

  • Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).

    Article 

    Google Scholar
     

  • Schwarz, N. et al. Understanding biodiversity-ecosystem service relationships in urban areas: a comprehensive literature review. Ecosyst. Serv. 27, 161–171 (2017).

    Article 

    Google Scholar
     

  • Andersson, E. et al. Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems. BioScience 69, 566–574 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).

    Article 

    Google Scholar
     

  • Elliott, R. M. et al. Identifying linkages between urban green infrastructure and ecosystem services using an expert opinion methodology. Ambio 49, 569–583 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Depietri, Y. Planning for urban green infrastructure: addressing tradeoffs and synergies. Curr. Opin. Environ. Sustain. 54, 101148 (2022).

    Article 

    Google Scholar
     

  • Egerer, M. et al. Urban change as an untapped opportunity for climate adaptation. Npj Urban Sustain. 1, 1–9 (2021).

    Article 

    Google Scholar
     

  • Li, F. et al. Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. J. Clean. Prod. 163, S12–S18 (2017).

    Article 

    Google Scholar
     

  • Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: is greenspace planning and policy compliant? Land Use Policy 69, 93–101 (2017).

    Article 

    Google Scholar
     

  • Bai, X. et al. Six research priorities for cities and climate change. Nature 555, 23–25 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choat, B. et al. A call to record stormwater control functions and to share network data. J. Sustain. Water Built Environ. 8, 02521005 (2022).

    Article 

    Google Scholar
     

  • Cuthbert, M. O., Rau, G., Ekström, M., O’Carroll, D. & Bates, A. Global climate-driven trade-offs between the water retention and cooling benefits of urban greening. Nat. Commun. 13, 518 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prudencio, L. & Null, S. E. Stormwater management and ecosystem services: a review. Environ. Res. Lett. 13, 033002 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Raymond, C. M. et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 77, 15–24 (2017).

    Article 

    Google Scholar
     

  • Krieger, J. & Grubert, E. Life-cycle costing for distributed stormwater control measures on the gray-green continuum: a planning-level tool. J. Sustain. Water Built Environ 7, 04020019 (2021).

    Article 

    Google Scholar
     

  • Mell, I. C. Aligning fragmented planning structures through a green infrastructure approach to urban development in the UK and USA. Urban For. Urban Green. 13, 612–620 (2014).

    Article 

    Google Scholar
     

  • Kambites, C. & Owen, S. Renewed prospects for green infrastructure planning in the UK 1. Plan. Pract. Res. 21, 483–496 (2006).

    Article 

    Google Scholar
     

  • Matsler, A. M., Miller, T. R. & Groffman, P. M. The eco-techno spectrum: exploring knowledge systems’ challenges in green infrastructure management. (2021).

  • Markolf, S. A. et al. Interdependent infrastructure as linked social, ecological, and technological systems (SETSs) to address lock‐in and enhance resilience. Earths Future 6, 1638–1659 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Milly, P. C. D. et al. Stationarity is dead: whither water management. Science 319, 573–574 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chester, M. V., Underwood, B. S. & Samaras, C. Keeping infrastructure reliable under climate uncertainty. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0741-0 (2020).

  • Gregory, R. et al. Structured Decision-Making: a Practical Guide to Environmental Management Choices. (John Wiley & Sons, 2012).

  • Belton, V. & Stewart, T. Multiple Criteria Decision Analysis: an Integrated Approach. (Springer Science & Business Media, 2002).

  • Schwartz, B. & Schwartz, B. The Paradox of Choice: Why More is Less. (Ecco New York, 2004).

  • Chester, M. V. & Allenby, B. Toward adaptive infrastructure: flexibility and agility in a non-stationarity age. Sustain. Resilient Infrastruct. 4, 173–191 (2019).

    Article 

    Google Scholar
     

  • Cook, L. M. & Larsen, T. A. Towards a performance-based approach for multifunctional green roofs: an interdisciplinary review. Build. Environ. 188, 107489, https://doi.org/10.1016/j.buildenv.2020.107489 (2020).

    Article 

    Google Scholar
     

  • Minsker, B. et al. Progress and recommendations for advancing performance-based sustainable and resilient infrastructure design. J. Water Resour. Plan. Manag. 141, A4015006 (2015).

    Article 

    Google Scholar
     

  • James, P. et al. Towards an integrated understanding of green space in the European built environment. Urban For. Urban Green. 8, 65–75 (2009).

    Article 

    Google Scholar
     

  • Kabisch, N., Qureshi, S. & Haase, D. Human–environment interactions in urban green spaces—a systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 50, 25–34 (2015).

    Article 

    Google Scholar
     

  • Latest article