Monday, December 23, 2024

Understanding how space travel affects the female reproductive system – npj Women’s Health

Must read

  • Thriving in Space: Ensuring the Future of Biological and Physical Sciences Research: A Decadal Survey for 2023-2032. National Academies of Sciences, Engineering, and Medicine, Sciences (2023).

  • Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 184, 6002 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, Z. S. et al. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity 6, 33 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Space Radiation and Astronaut Health: Managing and Communicating Cancer Risks. The National Academies Press (2021).

  • Zeitlin, C. & La Tessa, C. The role of nuclear fragmentation in particle therapy and space radiation protection. Front. Oncol. 6, 65 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Space Radiation: An Important Concern for Human Spaceflight. Space Radiation Analysis Group, Johnson Space Center. https://srag.jsc.nasa.gov/spaceradiation/why/why.cfm

  • Cucinotta, F. A. Space radiation risks for astronauts on multiple International Space Station missions. PLoS ONE 9, e96099 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locke, P. A. & Weil, M. M. Personalized cancer risk assessments for space radiation exposures. Front. Oncol. 6, 38 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NASA Space Flight Human-System Standard Volume 1 Crew Health. NASA-STD-3001, Vol 1 Rev B (NASA, 2022).

  • Beheshti, A. et al. Genomic changes driven by radiation-induced DNA damage and microgravity in human cells. Int. J. Mol. Sci. (2021).

  • Meier, M. M. et al. Impact of the South Atlantic Anomaly on radiation exposure at flight altitudes during solar minimum. Sci. Rep. 13, 9348 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Federal Aviation Administration. CARI-7 and CARI-7A (2021) https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari7

  • Scheibler, C. et al. Cancer risks from cosmic radiation exposure in flight: a review. Front. Public Health 10, 947068 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The RadLab Portal and the RadLab Data API. NASA. https://visualization.osdr.nasa.gov/radlab/gui/data-overview/ (2024).

  • Bottollier-Depois, J. F. et al. Assessing exposure to cosmic radiation during long-haul flights. Radiat. Res. 153, 526–532 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadopoulos, A. et al. Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach. Radiat. Environ. Biophys. 62, 221–234 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trovati, S. et al. Human exposure to space radiation: role of primary and secondary particles. Radiat. Prot. Dosimetry 122, 362–366 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumaier, T. et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc. Natl. Acad. Sci. USA 109, 443–448 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, J., Karouia F., Cristea, O., Casey, R. & Popov, D. Ionizing Radiation as a Carcinogen, In Comprehensive Toxicology, Vol. 3rd, (ed McQueen, C.) 183–225 (Elsevier, 2018).

  • Vadhavkar, N. et al. Combinatorial DNA damage pairing model based on X-ray-induced foci predicts the dose and LET dependence of cell death in human breast cells. Radiat. Res. 182, 273–281 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Clowdsley, M. S. et al. Neutron environments on the Martian surface. Phys. Med. 17, 94–96 (2001).

    PubMed 

    Google Scholar
     

  • Hassler, D. M. et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343, 1244797 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Zeitlin, C. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–1084 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeitlin, C. et al. Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector. Life Sci. Space Res. 22, 89–97 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, G. A. Space radiation and human exposures, a primer. Radiat. Res. 185, 349–358 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datta, K., Suman, S., Kallakury, B. V. & Fornace, A. J. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS ONE 7, e42224 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. & Seli, E. Mitochondria as a biomarker for IVF outcome. Reproduction 157, R235–R242 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • May-Panloup, P. et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum. Reprod. Update 22, 725–743 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzeloglu-Kayisli, O. et al. Long-acting progestin-only contraceptives enhance human endometrial stromal cell expressed neuronal pentraxin-1 and reactive oxygen species to promote endothelial cell apoptosis. J. Clin. Endocrinol. Metab. 99, E1957–E1966 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drago-Ferrante, R. et al. Extraterrestrial gynecology: could spaceflight increase the risk of developing cancer in female astronauts? An updated review. Int. J. Mol. Sci. (2022).

  • Shin, E. et al. Organ-specific effects of low dose radiation exposure: a comprehensive review. Front. Genet. 11, 566244 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adriaens, I., Smitz, J. & Jacquet, P. The current knowledge on radiosensitivity of ovarian follicle development stages. Hum. Reprod. Update 15, 359–377 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra, B., Ortiz, L. & Luderer, U. Charged iron particles, components of space radiation, destroy ovarian follicles. Hum. Reprod. 31, 1816–1826 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, B., Ripperdan, R., Ortiz, L. & Luderer, U. Very low doses of heavy oxygen ion radiation induce premature ovarian failure. Reproduction 154, 123–133 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, B., Lawson, G. W., Ripperdan, R., Ortiz, L. & Luderer, U. Charged-iron-particles found in galactic cosmic rays are potent inducers of epithelial ovarian tumors. Radiat. Res. 190, 142–150 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, W. H., Thomson, A. B., Saran, F. & Kelsey, T. W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int. J. Radiat. Oncol. Biol. Phys. 62, 738–744 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Wallace, W. H., Thomson, A. B. & Kelsey, T. W. The radiosensitivity of the human oocyte. Hum. Reprod. 18, 117–121 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogilvy-Stuart, A. L. & Shalet, S. M. Effect of radiation on the human reproductive system. Environ. Health Perspect. 101, 109–116 (1993).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, P. T. & Froeding, L. P. Pelvic radiotherapy and sexual function in women. Transl. Androl. Urol. 4, 186–205 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milgrom, S. A. et al. Acute effects of pelvic irradiation on the adult uterus revealed by dynamic contrast-enhanced MRI. Br. J. Radiol. 86, 20130334 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, E. C. et al. Radiotherapy at a young age reduces uterine volume of childhood cancer survivors. Acta Obstet. Gynecol. Scand. 83, 96–102 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Van de Loo, L. E. X. M. et al. Uterine function, pregnancy complications, and pregnancy outcomes among female childhood cancer survivors. Fertil. Steril. 111, 372–380 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Papatheodorou, S. et al. Residential radon exposure and hypertensive disorders of pregnancy in Massachusetts, USA: a cohort study. Environ. Int. 146, 106285 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • VanKoevering, K. K. et al. Pituitary dysfunction after radiation for anterior skull base malignancies: incidence and screening. J. Neurol. Surg. B Skull Base 81, 75–81 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Darzy, K. H. & Shalet, S. M. Hypopituitarism following radiotherapy. Pituitary 12, 40–50 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Roth, C., Lakomek, M., Schmidberger, H. & Jarry, H. Cranial irradiation induces premature activation of the gonadotropin-releasing-hormone. Klin. Padiatr. 213, 239–243 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallagher, M., Torok, A., Klaas, J. & Ferrè, E. R. Gravity prior in human behaviour: a perceptual or semantic phenomenon? Exp. Brain Res. 238, 1957–1962 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karouia, F., Peyvan, K. & Pohorille, A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol. Adv. 35, 905–932 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Williams DR. A crewed mission to Mars. NASA Goddard Space Flight Center. https://nssdc.gsfc.nasa.gov/planetary/mars/marsprof.html (2015).

  • Lin, X. et al. The impact of spaceflight and simulated microgravity on cell adhesion. Int. J. Mol. Sci.(2020).

  • Najrana, T. & Sanchez-Esteban, J. Mechanotransduction as an adaptation to gravity. Front. Pediatr. 4, 140 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuday, E. C., Nyhan, D., Shoukas, A. A. & Berkowitz, D. E. Simulated microgravity-induced aortic remodeling. J. Appl. Physiol. 106, 2002–2008 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arbeille, P., Provost, R. & Zuj, K. Carotid and femoral artery intima-media thickness during 6 months of spaceflight. Aerosp. Med. Hum. Perform. 87, 449–453 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Page, S. & Rollins M. Physiology and Pharmacology of Obstetrics Anesthesia. In Pharmacology and Physiology for Anesthesia Foundations and Clinical Application (eds Hemmings, H. C. & Egan, T. D.) 2nd Ed., pp 732–751 (Elsevier, 2019).

  • Jennings, R. T. & Baker, E. S. Gynecological and reproductive issues for women in space: a review. Obstet. Gynecol. Surv. 55, 109–116 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillman, M. W. Developmental origins of health and disease. New Engl. J. Med. 353, 1848–1850 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moustafa, A. Hindlimb unloading-induced reproductive suppression via downregulation of hypothalamic Kiss-1 expression in adult male rats. Reprod. Biol. Endocrinol. 19, 37 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer, L. A. et al. Intracranial effects of microgravity: a prospective longitudinal MRI study. Radiology 295, 640–648 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lauria, L., Ballard, T. J., Caldora, M., Mazzanti, C. & Verdecchia, A. Reproductive disorders and pregnancy outcomes among female flight attendants. Aviat. Space Environ. Med. 77, 533–539 (2006).

    PubMed 

    Google Scholar
     

  • Radowicka, M., Pietrzak, B. & Wielgoś, M. Assessment of the occurrence of menstrual disorders in female flight attendants—preliminary report and literature review. Neuro Endocrinol. Lett. 34, 809–813 (2013).

    PubMed 

    Google Scholar
     

  • Sandler, H. & Winters, D. Physiological Responses of Women to Simulated Weightlessness. A Review of the Significant Findings of the First Female Bed Rest Study (NASA SP-340, 1978).

  • Hong, X. et al. Effects of spaceflight aboard the International Space Station on mouse estrous cycle and ovarian gene expression. NPJ Microgravity 7, 11 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronca, A. E. et al. Effects of sex and gender on adaptations to space: reproductive health. J. Womens Health 23, 967–974 (2014).

    Article 

    Google Scholar
     

  • Holets, L. M., Gupta, V., Roby, K. F. & Tash, J. S. Spaceflight Inhibits Ovarian Follicle Development, Induces Down Regulation of Estrogen Receptor Alpha, and Alters Metabolic Pathways and Gene Expression in Mouse Uterus. Biol. Reprod. 87, 18 (2012).

    Article 

    Google Scholar
     

  • Rosa-Caldwell, M. E. et al. The oestrous cycle and skeletal muscle atrophy: investigations in rodent models of muscle loss. Exp. Physiol. 106, 2472–2488 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Megory, E., Konikoff, F., Ishay, J. S. & Lelyveld, J. Hypergravity: its effect on the estrous cycle and hormonal levels in female rats. Life Sci. Space Res. 17, 213–218 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwart, S. R., Auñón-Chancellor, S. M., Heer, M., Melin, M. M. & Smith, S. M. Albumin, oral contraceptives, and venous thromboembolism risk in astronauts. J. Appl. Physiol. 132, 1232–1239 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyal, S. & Derendorf, H. Medications in space: in search of a pharmacologist’s guide to the galaxy. Pharm. Res. 36, 148 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, S. R. et al. Menopause. Nat. Rev. Dis. Primers 1, 15004 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Stavnichuk, M., Mikolajewicz, N., Corlett, T., Morris, M. & Komarova, S. V. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity 6, 13 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, S. A. et al. Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: a model of long-duration spaceflight. Bone 51, 756–764 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aydogan Mathyk, B., Alvarado, F., Young, S., Beheshti, A. & Quaas, A. Effects of Spaceflight on Estrogen Receptor Expression and Signaling. Scientific Papers Presented at the 70th Annual Meeting of the Pacific Coast Reproductive Society March 23-27, 2022. Fertility and Sterility. Vol 118, e21 (2022).

  • Cirelli, E. et al. Effect of microgravity on aromatase expression in sertoli cells. Sci. Rep. 7, 3469 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aydogan Mathyk, B., Alvarado, F., Young, S., Quaas, A. & Beheshti, A. Expression of insulin resistance related genes during spaceflight. Fertility Sterility 116, E107 (2021).

    Article 

    Google Scholar
     

  • Mathyk, B. et al. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun. Biol. https://doi.org/10.1038/s42003-023-05213-2 (2024).

  • Baker, F. C. & Driver, H. S. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 8, 613–622 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kloss, J. D., Perlis, M. L., Zamzow, J. A., Culnan, E. J. & Gracia, C. R. Sleep, sleep disturbance, and fertility in women. Sleep Med. Rev. 22, 78–87 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Caetano, G. et al. Impact of sleep on female and male reproductive functions: a systematic review. Fertil. Steril. 115, 715–731 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wiegand, S. J. & Terasawa, E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology 34, 395–404 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casey, T. et al. Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks. Biol. Open 1, 570–581 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranieri, D., Cucina, A., Bizzarri, M., Alimandi, M. & Torrisi, M. R. Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio 5, 717–723 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, S. I., Rutter, L., Ong, Q. & Muratani, M. Integrated RNA-seq analysis indicates asynchrony in clock genes between tissues under spaceflight. Life (2020).

  • Wang, L. et al. NR1D1 targeting CYP19A1 inhibits estrogen synthesis in ovarian granulosa cells. Theriogenology 180, 17–29 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlovic, M. V., Marinkovic, D. Z., Andric, S. A. & Kostic, T. S. The cost of the circadian desynchrony on the Leydig cell function. Sci. Rep. 12, 15520 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Touzet, S., Rabilloud, M., Boehringer, H., Barranco, E. & Ecochard, R. Relationship between sleep and secretion of gonadotropin and ovarian hormones in women with normal cycles. Fertil. Steril. 77, 738–744 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Vgontzas, A. N. et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J. Clin. Endocrinol. Metab. 86, 3787–3794 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breen, K. M. & Mellon, P. L. Influence of stress-induced intermediates on gonadotropin gene expression in gonadotrope cells. Mol. Cell Endocrinol. 385, 71–77 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. et al. Aging attenuates the ovarian circadian rhythm. J. Assist. Reprod. Genet. 38, 33–40 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Werdermann, M. et al. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol. Metab. 43, 101112 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oosterman, J. E., Wopereis, S. & Kalsbeek, A. The circadian clock, shift work, and tissue-specific insulin resistance. Endocrinology (2020).

  • Hughson, R. L. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 310, H628–638, (2016).

    Article 
    PubMed 

    Google Scholar
     

  • St-Onge, M. P. et al. The interrelationship between sleep, diet, and glucose metabolism. Sleep Med. Rev 69, 101788 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupont, J. & Scaramuzzi, R. J. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem. J. 473, 1483–1501 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silvestris, E., de Pergola, G., Rosania, R. & Loverro, G. Obesity as disruptor of the female fertility. Reprod. Biol. Endocrinol. 16, 22 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caughey A. B. ACOG Practice Bulletin No. 180: Gestational Diabetes Mellitus. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 130, e17–e37. https://journals.lww.com/greenjournal/fulltext/2017/07000/practice_bulletin_no__180__gestational_diabetes.51.aspx (2017).

  • Fekry, B. & Eckel-Mahan, K. The circadian clock and cancer: links between circadian disruption and disease Pathology. J. Biochem. 171, 477–486 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orisaka, M. et al. The role of pituitary gonadotropins and intraovarian regulators in follicle development: a mini-review. Reprod. Med. Biol. 20, 169–175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, K. et al. Simulated microgravity reduces quality of ovarian follicles and oocytes by disrupting communications of follicle cells. NPJ Microgravity 9, 7 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, T. X. et al. Simulated microgravity induces the proliferative inhibition and morphological changes in porcine granulosa cells. Curr. Issues Mol. Biol. 43, 2210–2219 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorbacheva, E. Y. et al. The state of the organs of the female reproductive system after a 5-day “dry” immersion. Int. J. Mol. Sci. (2023).

  • Zhang, S. et al. Simulated microgravity using a rotary culture system compromises the in vitro development of mouse preantral follicles. PLoS ONE 11, e0151062 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. Simulated microgravity compromises mouse oocyte maturation by disrupting meiotic spindle organization and inducing cytoplasmic blebbing. PLoS ONE 6, e22214 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miglietta, S. et al. Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based study. Cells (2023).

  • Lemseffer, Y., Terret, M. E., Campillo, C. & Labrune, E. Methods for assessing oocyte quality: a review of literature. Biomedicines (2022).

  • Ferreira, A. F., Soares, M., Almeida-Santos, T., Ramalho-Santos, J. & Sousa, A. P. Aging and oocyte competence: a molecular cell perspective. WIREs Mech. Dis. 15, e1613 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luxton, J. J. et al. Telomere length dynamics and DNA damage responses associated with long-duration spaceflight. Cell Rep. 33, 108457 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capri, M. et al. Long-term human spaceflight and inflammaging: does it promote aging? Ageing Res Rev 87, 101909 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science (2019).

  • Zhou, M., Sng, N. J., LeFrois, C. E., Paul, A. L. & Ferl, R. J. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 20, 205 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, Y. et al. Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil. Steril. 74, 1142–1147 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tash, J. et al. Fertilization-critical Motility and Acrosome Reaction of Human and Bovine Sperm are Negatively Impacted by Spaceflight on the ISS (ASGSR, 2020).

  • Mitra, A. et al. Impact of Spaceflight Radiationand Microgravity on DNA Integrity and Fertility Risk of Human and Bovine Sperm on the ISS (ASGSR, 2020).

  • Matsumura, T. et al. Male mice, caged in the International Space Station for 35 days, sire healthy offspring. Sci. Rep. 9, 13733 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahase, E. Three FDA advisory panel members resign over approval of Alzheimer’s drug. BMJ 373, n1503 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wakayama, S. et al. Detrimental effects of microgravity on mouse preimplantation development in vitro. PLoS ONE 4, e6753 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, K. et al. Intergenerational effect of short-term spaceflight in mice. iScience 24, 102773 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakayama, S. et al. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station. Sci. Adv. (2021).

  • Lei, X. et al. Development of mouse preimplantation embryos in space. Natl. Sci. Rev. 7, 1437–1446 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, CNQ. et al. Simulated microgravity inhibits the proliferation of chang liver cells by attenuation of the major cell cycle regulators and cytoskeletal proteins. Int. J. Mol. Sci. (2021).

  • Kamal, K. Y., Herranz, R., van Loon, J. J. W. A. & Medina, F. J. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci. Rep. 8, 6424 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. A major effect of simulated microgravity on several stages of preimplantation mouse development is lethality associated with elevated phosphorylated SAPK/JNK. Reprod. Sci. 16, 947–959 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, M. et al. Differential expression profiles of long non‑coding RNAs during the mouse pronuclear stage under normal gravity and simulated microgravity. Mol. Med. Rep. 19, 155–164 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, F., Ye, Y., Lei, X. & Zhang, W. Effects of microgravity on early embryonic development and embryonic stem cell differentiation: phenotypic characterization and potential mechanisms. Front. Cell Dev. Biol 9, 797167 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakayama, S. et al. Development of a new device for manipulating frozen mouse 2-cell embryos on the International Space Station. PLoS ONE 17, e0270781 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schatz, F., Guzeloglu-Kayisli, O., Arlier, S., Kayisli, U. A. & Lockwood, C. J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update 22, 497–515 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, 1437 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. K. et al. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal cell-type, sex, and microbiome-specific responses to spaceflight. Nat. Commun. https://doi.org/10.1038/s41467-024-49211-2 (2024).

  • Abuwala, N. & Tal, R. Endometrial stem cells: origin, biological function, and therapeutic applications for reproductive disorders. Curr. Opin. Obstet. Gynecol. 33, 232–240 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, H. J. et al. Microgravity inhibits decidualization via decreasing Akt activity and FOXO3a expression in human endometrial stromal cells. Sci. Rep. 9, 12094 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMaster, M. T., Teng, C. T., Dey, S. K. & Andrews, G. K. Lactoferrin in the mouse uterus: analyses of the preimplantation period and regulation by ovarian steroids. Mol. Endocrinol. 6, 101–111 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Hennes, A. et al. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci. Rep. 9, 1779 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arishe, O. O., Ebeigbe, A. B. & Webb, R. C. Mechanotransduction and uterine blood flow in preeclampsia: the role of mechanosensing piezo 1 ion channels. Am. J. Hypertens. 33, 1–9 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Proshchina, A. et al. Reproduction and the early development of vertebrates in space: problems, results, opportunities. Life (2021).

  • Serova, L. V. & Denisova, L. A. The effect of weightlessness on the reproductive function of mammals. Physiologist 25, S9–S12 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Serova L, D. L., Makeev, V. & Chelnaya, N. The effect of microgravity on prenatal development of mammals. Physiologist. 27, 107–110 (1984).


    Google Scholar
     

  • Ronca, A. E. & Alberts, J. R. Physiology of a microgravity environment selected contribution: effects of spaceflight during pregnancy on labor and birth at 1 G. J. Appl. Physiol. 89, 849–854 (2000). discussion 848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhat, G. K., Yang, H. & Sridaran, R. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat. J. Gravit. Physiol. 8, 57–66 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Ijiri, K. Development of space-fertilized eggs and formation of primordial germ cells in the embryos of Medaka fish. Adv. Space Res. 21, 1155–1158 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadeem, L., Shynlova, O., Mesiano, S. & Lye, S. Progesterone via its type-A receptor promotes myometrial gap junction coupling. Sci. Rep. 7, 13357 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lye, S. J., Nicholson, B. J., Mascarenhas, M., MacKenzie, L. & Petrocelli, T. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology 132, 2380–2386 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamal, D. A. M., Ibrahim, S. F. & Mokhtar, M. H. Effects of testosterone on the expression of connexin 26 and connexin 43 in the uterus of rats during early pregnancy. In Vivo 34, 1863–1870 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burden, H. W., Zary, J. & Alberts, J. R. Effects of space flight on the immunohistochemical demonstration of connexin 26 and connexin 43 in the postpartum uterus of rats. J. Reprod. Fertil. 116, 229–234 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keil, L., Evans, J., Grindeland, R. & Krasnov, I. Pituitary oxytocin and vasopressin content of rats flown on COSMOS 2044. J. Appl. Physiol. 73, 166S–168S (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Ovejero, D., Trejo, J. L., Ciriza, I., Walton, K. D. & García-Segura, L. M. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects. Brain Res. Dev. Brain Res. 130, 191–205 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Baer, L. A., Wade, C. E. & Ronca, A. E. Effects of hypergravity exposure on plasma oxytocin concentration in pregnant and lactating rat dams. J. Gravit. Physiol. 9, P205–P206 (2002).

    PubMed 

    Google Scholar
     

  • Colaianni, G. et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J. Biol. Chem. 287, 29159–29167 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross, A. P. et al. Sex-dependent effects of social isolation on the regulation of arginine-vasopressin (AVP) V1a, oxytocin (OT) and serotonin (5HT) 1a receptor binding and aggression. Horm. Behav. 116, 104578 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lintault, L. M. et al. In a hypergravity environment neonatal survival is adversely affected by alterations in dam tissue metabolism rather than reduced food intake. J. Appl. Physiol. 102, 2186–2193 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hardikar, A. A. et al. Multigenerational undernutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab. 22, 312–319 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ACOG Committee Opinion No. 762: Prepregnancy counseling. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 133, e78–e89 (2019).

  • Kominiarek, M. A. & Rajan, P. Nutrition recommendations in pregnancy and lactation. Med. Clin. North Am. 100, 1199–1215 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, V. & Wotring, V. E. Medically induced amenorrhea in female astronauts. NPJ Microgravity 2, 16008 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trussell, J. Contraceptive failure in the United States. Contraception 83, 397–404 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heer, M. & Paloski, W. H. Space motion sickness: incidence, etiology, and countermeasures. Auton. Neurosci. 129, 77–79 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Jang, Y. S., Lee, E. S. & Kim, Y. K. Venous thromboembolism associated with combined oral contraceptive use: a single-institution experience. Obstet. Gynecol. Sci. 64, 337–344 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall-Goebel, K. et al. Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Netw. Open 2, e1915011 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology. ACOG practice bulletin no. 208: benefits and risks of sterilization. Obstet. Gynecol. 133, e194–e207 (2019).

    Article 

    Google Scholar
     

  • Hibaoui, Y. & Feki, A. Organoid models of human endometrial development and disease. Front. Cell Dev. Biol. 8, 84 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laronda, M. M. et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 8, 15261 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantalone, D. et al. Robot-assisted surgery in space: pros and cons. A review from the surgeon’s point of view. NPJ Microgravity 7, 56 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiranaka, T. et al. The use of smart glasses for surgical video streaming. Surg. Innov. 24, 151–154 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • El Rassi, I. & El Rassi, J. M. A review of haptic feedback in tele-operated robotic surgery. J. Med. Eng. Technol. 44, 247–254 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sitti, M. Miniature soft robots—road to the clinic. Nat. Rev. Mater. 3, 74–75 (2018).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. NASA’s ground-based microgravity simulation facility. Methods Mol. Biol. 2368, 281–299 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarabi, M. R., Yetisen, A. K. & Tasoglu, S. Magnetic levitation for space exploration. Trends Biotechnol. 40, 915–917 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tasoglu, S. et al. Levitational image cytometry with temporal resolution. Adv. Mater. 27, 3901–3908 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, J., Karouia, F., Pinsky, L. & Cristea, O. Radiation and Radiation Disorders. In Principles of Clinical Medicine for Space Flight (eds Barratt, M. R., Baker, E. S. & Pool, S. L.) 39–108 (Springer, 2019).

  • Patel, S. J., Reede, D. L., Katz, D. S., Subramaniam, R. & Amorosa, J. K. Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerations. Radiographics 27, 1705–1722 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Megory, E. & Oyama, J. Hypergravity induced prolactin surge in female rats. Aviat. Space Environ. Med. 56, 415–418 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Tou, J. C., Grindeland, R. E. & Wade, C. E. Effects of diet and exposure to hindlimb suspension on estrous cycling in Sprague-Dawley rats. Am. J. Physiol. Endocrinol. Metab. 286, E425–433, (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsman, A. & Nier, A. The effects of spaceflight on mucin production in the mouse uterus. Gravit. Space Res. 1, 20–28 (2013).

  • Schenker, E. & Forkheim, K. Mammalian mice embryo early development in weightlessness environment on STS 80 space flight. Israel Aerospace Med Inst Rep 1998, 5 (1998).


    Google Scholar
     

  • Ma, B. et al. Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite. Microgravity Sci. Technol. 20, 127–136 (2008).

  • Wang, Y., An, L., Jiang, Y. & Hang, H. Effects of simulated microgravity on embryonic stem cells. PLoS ONE 6, e29214 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya, A. et al. Modulation of differentiation processes in murine embryonic stem cells exposed to parabolic flight-induced acute hypergravity and microgravity. Stem Cells Dev. 27, 838–847 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, X. et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission. Cell Prolif. 51, e12466 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oyama, J. & Platt, W. T. Reproduction and growth of mice and rats under conditions of simulated increased gravity. Am. J. Physiol. 212, 164–166 (1967).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serova LV, D. L., Makeeva, V. F., Chelnaya, N. A. & Pustynnikova, A. M. The effect of microgravity on the prenatal development of mammals. Physiologist 27, 107–110 (1984).


    Google Scholar
     

  • Megory, E. & Oyama, J. Hypergravity effects on litter size, nursing activity, prolactin, TSH, T3, and T4 in the rat. Aviat. Space Environ. Med. 55, 1129–1135 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Moore, J. & Duke, J. Effect of chronic centrifugation on mouse breeding pairs and their offspring. Physiologist 31, S120–S121 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Burden, H. W. et al. Effects of space flight on ovarian-hypophyseal function in postpartum rats. J Reprod. Fertil. 109, 193–197 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, A. M. & DeSantis, M. Rat gestation during space flight: outcomes for dams and their offspring born after return to Earth. Integr. Physiol. Behav. Sci. 32, 322–342 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burden, H. W., Poole, M. C., Zary, J., Jeansonne, B. & Alberts, J. R. The effects of space flight during gestation on rat uterine smooth muscle. J. Gravit. Physiol. 5, 23–29 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H., Bhat, G. K. & Sridaran, R. Clinostat rotation induces apoptosis in luteal cells of the pregnant rat. Biol. Reprod. 66, 770–777 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casey, T., Patel, O. V. & Plaut, K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol. Genomics 47, 113–128 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steller, J. G., Ronca, A., Powell, T. L. & Jansson, T. Effects of near-continuous low-dose neutron irradiation on pregnancy outcomes in mice. Am. J. Obstetr. Gynecol. 222, S570–S571 (2019).

  • Latest article