Kariyawasam, A., Ariyasinghe, A., Rajaratnam, A. & Subasinghe, P. Comparative study on skill and health related physical fitness characteristics between national basketball and football players in Sri Lanka. BMC. Res. Notes 12, 1–5. https://doi.org/10.1186/s13104-019-4434-6 (2019).
Cirone, D., Berbrier, D. E., Gibbs, J. C. & Usselman, C. W. Health-related physical fitness in women with polycystic ovary syndrome versus controls: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 309, 1–20. https://doi.org/10.1007/s00404-023-07004-w (2023).
Blair, S. N., Cheng, Y. & Holder, J. S. Is physical activity or physical fitness more important in defining health benefits? Sci. Sport Exerc. 33, S379–S399. https://doi.org/10.1097/00005768-200106001-00007 (2001).
Tomkinson, G. R. et al. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 52, 1445–1456. https://doi.org/10.1136/bjsports-2017-098253 (2017).
American College of Sports Medicine. Acsm’s Health-Related Physical Fitness Assessment Manual 5th edn. (Lippincott Williams & Wilkins, 2013).
Al-Mallah, M. H., Sakr, S. & Al-Qunaibet, A. Cardiorespiratory fitness and cardiovascular disease prevention: An update. Curr. Atheroscler. Rep. 20, 1–9. https://doi.org/10.1007/s11883-018-0711-4 (2018).
Ezzatvar, Y. et al. Cardiorespiratory fitness measured with cardiopulmonary exercise testing and mortality in patients with cardiovascular disease: A systematic review and meta-analysis. J. Sport Health Sci. 10, 609–619. https://doi.org/10.1016/j.jshs.2021.06.004 (2021).
Kandola, A., Ashdown-Franks, G., Stubbs, B., Osborn, D. P. J. & Hayes, J. F. The association between cardiorespiratory fitness and the incidence of common mental health disorders: A systematic review and meta-analysis. J. Affect. Disord. 257, 748–757. https://doi.org/10.1016/j.jad.2019.07.088 (2019).
Ramirez-Campillo, R. et al. The effects of plyometric jump training on physical fitness attributes in basketball players: A meta-analysis. J. Sport Health Sci. 11, 656–670. https://doi.org/10.1016/j.jshs.2020.12.005 (2021).
Mazurek, K. et al. Effects of short-term plyometric training on physical performance in male handball players. J. Hum. Kinet. 63, 137–148. https://doi.org/10.2478/hukin-2018-0014 (2018).
Moran, J. et al. Effects of vertically and horizontally orientated plyometric training on physical performance: A meta-analytical comparison. Sports Med. 51, 65–79. https://doi.org/10.1007/s40279-020-01340-6 (2021).
Deng, N. et al. Effects of plyometric training on skill and physical performance in healthy tennis players: A systematic review and meta-analysis. Front. Physiol. 13, 3158–3169. https://doi.org/10.3389/fphys.2022.1024418 (2022).
Kons, R. L. et al. Effects of plyometric training on physical performance: An umbrella review. Sports Med.-Open 9, 4. https://doi.org/10.1186/s40798-022-00550-8 (2023).
Sole, C. J., Bellon, C. R. & Beckham, G. K. Plyometric training. In Advanced Strength and Conditioning: An Evidence-Based Approach (eds Turner, A. & Comfort, P.) 307–327 (Routledge, 2022).
Morio, C. et al. Time course of neuro-mechanical changes underlying stretch–shortening cycle during intermittent exhaustive rebound exercise. Eur. J. Appl. Physiol. 111, 2295–2305. https://doi.org/10.1007/s00421-011-1859-6 (2011).
Davies, G., Riemann, B. L. & Manske, R. Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 10, 760–786 (2015).
Markovic, G. & Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 40, 859–895. https://doi.org/10.2165/11318370-000000000-00000 (2010).
Slimani, M., Chamari, K., Miarka, B., Del Vecchio, F. B. & Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 53, 231. https://doi.org/10.1515/hukin-2016-0026 (2016).
Ramirez-Campillo, R. et al. Effects of plyometric jump training on measures of physical fitness and sport-specific performance of water sports athletes: A systematic review with meta-analysis. Sports Med.-Open 8(1), 108. https://doi.org/10.1186/s40798-022-00502-2 (2022).
Deng, N., Soh, K. G., Abdullah, B. & Huang, D. Effects of plyometric training on measures of physical fitness in racket sport athletes: A systematic review and meta-analysis. PeerJ 11, e16638. https://doi.org/10.7717/peerj.16638 (2023).
Ojeda-Aravena, A. et al. A systematic review with meta-analysis on the effects of plyometric-jump training on the physical fitness of combat sport athletes. Sports 11(2), 33. https://doi.org/10.3390/sports11020033 (2023).
Oxfeldt, M., Overgaard, K., Hvid, L. G. & Dalgas, U. Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta-analyses. Scand. J. Med. Sci. Sports 29(10), 1453–1465. https://doi.org/10.1111/sms.13487 (2019).
Moran, J., Clark, C. C., Ramirez-Campillo, R., Davies, M. J. & Drury, B. A meta-analysis of plyometric training in female youth: Its efficacy and shortcomings in the literature. J. Strength Cond. Res. 33(7), 1996–2008. https://doi.org/10.1519/JSC.0000000000002768 (2019).
Vetrovsky, T., Steffl, M., Stastny, P. & Tufano, J. J. The efficacy and safety of lower-limb plyometric training in older adults: A systematic review. Sports Med. 49, 113–131. https://doi.org/10.1007/s40279-018-1018-x (2019).
Garcia-Carrillo, E. et al. Effects of upper-body plyometric training on physical fitness in healthy youth and young adult participants: A systematic review with meta-analysis. Sports Med.-Open 9(1), 93. https://doi.org/10.1186/s40798-023-00631-2 (2023).
De Villarreal, E. S., Requena, B. & Newton, R. U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport 13(5), 513–522. https://doi.org/10.1016/j.jsams.2009.08.005 (2010).
Ramirez-Campillo, R. et al. Body composition adaptations to lower-body plyometric training: A systematic review and meta-analysis. Biol. Sport 39, 273–287. https://doi.org/10.5114/BIOLSPORT.2022.104916 (2022).
Bompa, O. T. & Buzzichelli, C. Periodization of Strength Training for Sports 4th edn. (Human Kinetics, 2013).
Goodwin, J. E. & Jeffreys, I. Plyometric training: Theory and practice. In Strength and Conditioning for Sports Performance (eds Goodwin, J. E. & Jeffreys, I.) 346–382 (Routledge, 2016).
Potach, D. H. & Chu, D. A. Program design and technique for plyometric training. In Essentials of Strength Training and Conditioning 4th edn (eds Haff, G. G. & Triplett, N. T.) 471–520 (Human Kinetics, 2015).
Cakar, E. et al. Jumping combined exercise programs reduce fall risk and improve balance and life quality of elderly people who live in a long-term care facility. Eur. J. Phys. Rehabil. Med. 46, 59–67 (2010).
Johnson, B. A., Salzberg, C. L. & Stevenson, D. A. A systematic review: Plyometric training programs for young children. J. Strength Cond. Res. 25, 2623–2633. https://doi.org/10.1519/JSC.0b013e318204caa0 (2011).
Sortwell, A., Newton, M., Marinho, D. A., Ferraz, R. & Perlman, D. The effects of an eight week plyometric-based program on motor performance skills and muscular power in 7–8-year-old primary school students. Int. J. Kinesiol. Sports Sci. 9, 1–12. https://doi.org/10.7575/aiac.ijkss.v.9n.4p.1 (2021).
Racil, G. et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl. Physiol. Nutr. Metab. 41, 103–109. https://doi.org/10.1139/apnm-2015-0384 (2015).
Marzouki, H. et al. Effects of surface-type plyometric training on physical fitness in schoolchildren of both sexes: A randomized controlled intervention. Biology 11, 1035. https://doi.org/10.3390/biology11071035 (2022).
Almeida, M. B. D. et al. Plyometric training increases gross motor coordination and associated components of physical fitness in children. Eur. J. Sport Sci. 21, 1263–1272. https://doi.org/10.1080/17461391.2020.1838620 (2021).
Nobre, G. G. et al. Twelve weeks of plyometric training improves motor performance of 7- to 9-year-old boys who were overweight/obese: A randomized controlled intervention. J. Strength Cond. Res. 31, 2091–2099. https://doi.org/10.1519/JSC.0000000000001684 (2017).
Ingle, L., Sleap, M. & Tolfrey, K. The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys. J. Sports Sci. 24, 987–997. https://doi.org/10.1080/02640410500457117 (2006).
Marín-Cascales, E., Rubio-Arias, J. A., Romero-Arenas, S. & Alcaraz, P. E. Effect of 12 weeks of whole-body vibration versus multi-component training in post-menopausal women. Rejuvenat. Res. 18, 508–516. https://doi.org/10.1089/rej.2015.1681 (2015).
Ozen, S. V. Reproductive hormones and cortisol responses to plyometric training in males. Biol. Sport 29, 193–197. https://doi.org/10.5604/20831862.1003442 (2012).
Gopalakrishnan, S. & Ganeshkumar, P. Systematic reviews and meta-analysis: Understanding the best evidence in primary healthcare. J. Fam. Med. Prim. Care 2(1), 9–14. https://doi.org/10.4103/2249-4863.109934 (2013).
Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906 (2021).
Amir-Behghadami, M. & Janati, A. Population, intervention, comparison, outcomes and study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 1, 1. https://doi.org/10.1136/emermed-2020-209567 (2020).
Ramirez-Campillo, R. et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 48, 1059–1081. https://doi.org/10.1007/s40279-018-0870-z (2018).
Flemyng, E. et al. Using risk of bias 2 to assess results from randomised controlled trials: Guidance from Cochrane. BMJ Evid.-Based Med. 28, 260–266. https://doi.org/10.1136/bmjebm-2022-112102 (2023).
Sterne, J. A. et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355, i4919. https://doi.org/10.1136/bmj.i4919 (2016).
Schünemann, H. J. et al. GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J. Clin. Epidemiol. 122, 129–141. https://doi.org/10.1016/j.jclinepi.2019.12.020 (2022).
Ramirez-Campillo, R. et al. Effects of plyometric jump training on the reactive strength index in healthy individuals across the lifespan: A systematic review with meta-analysis. Sports Med. 53, 1029–1053. https://doi.org/10.1007/s40279-023-01825-0 (2023).
Deeks, J. J., Higgins, J. P. & Altman, D. G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. & Green, S.) 243–296 (The Cochrane Collaboration, 2008).
Kontopantelis, E., Springate, D. A. & Reeves, D. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 8, e69930. https://doi.org/10.1371/journal.pone.0069930 (2013).
Hopkins, W. G., Marshall, S. W., Batterham, A. M. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278 (2009).
Higgins, J. P., Deeks, J. J. & Altman, D. G. Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. & Green, S.) 481–529 (The Cochrane Collaboration, 2008).
Drevon, D., Fursa, S. R. & Malcolm, A. L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav. Modif. 41, 323–339. https://doi.org/10.1177/0145445516673998 (2016).
Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558. https://doi.org/10.1002/sim.1186 (2002).
Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629 (1997).
Faigenbaum, A. D. et al. Effects of a short-term plyometric and resistance training program on fitness performance in boys age 12 to 15 years. J. Sports Sci. Med. 6, 519–525 (2007).
Faigenbaum, A. D. et al. “Plyo play”: A novel program of short bouts of moderate and high. Phys. Educ. Winter 66(1), 37 (2009).
Tsang, K. & DiPasquale, A. Improving the Q: H strength ratio in women using plyometric exercises. J. Strength Cond. Res. 25, 2740–2745. https://doi.org/10.1519/JSC.0b013e31820d9e95 (2011).
Park, J., Cho, K. & Lee, W. Effect of jumping exercise on muscle strength and balance of elderly people: A randomized controlled trial. J. Phys. Ther. Sci. 24, 1345–1348. https://doi.org/10.1589/jpts.24.1345 (2012).
Chaouachi, A., Othman, A. B., Hammami, R., Drinkwater, E. J. & Behm, D. G. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children. J. Strength Cond. Res. 28, 401–412. https://doi.org/10.1519/JSC.0b013e3182987059 (2014).
Marín-Cascales, E., Alcaraz, P. E. & Rubio-Arias, J. A. Effects of 24 weeks of whole body vibration versus multicomponent training on muscle strength and body composition in postmenopausal women: A randomized controlled trial. Rejuvenat. Res. 20, 193–201. https://doi.org/10.1089/rej.2016.1877 (2017).
Qi, F. et al. Effects of combined training on physical fitness and anthropometric measures among boys aged 8 to 12 years in the physical education setting. Sustainability 11(5), 51219. https://doi.org/10.3390/su11051219 (2019).
van Roie, E. et al. An age-adapted plyometric exercise program improves dynamic strength, jump performance and functional capacity in older men either similarly or more than traditional resistance training. PLoS ONE 15, 1–22. https://doi.org/10.1371/journal.pone.0237921 (2020).
Radwan, N. L., Mahmoud, W. S., Mohamed, R. A. & Ibrahim, M. M. Effect of adding plyometric training to physical education sessions on specific biomechanical parameters in primary school girls. J. Musculoskel. Neuronal Interact. 21, 237–246 (2021).
Singh, G. et al. Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males. J. Sports Sci. Med. 21(2), 277–286. https://doi.org/10.52082/jssm.2022.277 (2022).
Bulqini, A., Widodo, A., Muhammad, H. N., Putera, S. H. P. & Sholikhah, A. M. A. Plyometric hurdle jump training using beach sand media increases power and muscle strength in young adult males. Phys. Educ. Theory Methodol. 23, 531–536. https://doi.org/10.17309/tmfv.2023.4.06 (2023).
Witzke, K. A. & Snow, C. M. Effects of plyometric jump training on bone mass in adolescent girls. Med. Sci. Sports Exerc. 32, 1051–1057. https://doi.org/10.1097/00005768-200006000-00003 (2000).
Villada, J. F. R., León Ariza, H. H., Jiménez, A. S. & Sepúlveda, C. M. Alterations in body composition, capillary glucose and functionality during explosive strength training in older women. Int. J. Disabil. Hum. Dev. 15, 251–259. https://doi.org/10.1515/ijdhd-2015-0011 (2016).
Thaqi, A., Berisha, M. & Hoxha, S. The effect of plyometric training on the power-related factors of children aged 16 years-old. Prog. Nutr. 22, e2020004. https://doi.org/10.2751/pn.v22i2-S.10441 (2020).
Willoughby, D., Hewlings, S. & Kalman, D. Body composition changes in weight loss: Strategies and supplementation for maintaining lean body mass, a brief review. Nutrients 10, 1876. https://doi.org/10.3390/nu10121876 (2018).
Shim, A., Cross, P., Norman, S. & Hauer, P. Assessing various body composition measurements as an appropriate tool for estimating body fat in National Collegiate Athletic Association Division I female collegiate athletes. Am. J. Sports Sci. Med. 2(1), 1–5. https://doi.org/10.12691/ajssm-2-1-1 (2014).
Merrigan, J. et al. Reliability and validity of contemporary bioelectrical impedance analysis devices for body composition assessment. J. Exerc. Nutr. 5(4), 103133. https://doi.org/10.53520/jen2022.103133 (2022).
Fonseca, D. C. et al. Body weight control and energy expenditure. Clin. Nutr. Exp. 20, 55–59. https://doi.org/10.1016/j.yclnex.2018.04.001 (2018).
Barillas, S. R. et al. Repeated plyometric exercise attenuates blood glucose in healthy adults. Int. J. Exerc. Sci. 10(7), 1076 (2017).
Monti, E. et al. The time-course of changes in muscle mass, architecture and power during 6 weeks of plyometric training. Front. Physiol. 11, 567299. https://doi.org/10.3389/fphys.2020.00946 (2020).
Campo, S. S. et al. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J. Strength Cond. Res. 23, 1714–1722. https://doi.org/10.1519/JSC.0b013e3181b3f537 (2009).
Aloui, G. et al. Effects of elastic band plyometric training on physical performance of team handball players. Appl. Sci. 11, 1309. https://doi.org/10.3390/app11031309 (2021).
Oliveira, A., Monteiro, A., Jacome, C., Afreixo, V. & Marques, A. Effects of group sports on health-related physical fitness of overweight youth: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 27, 604–611. https://doi.org/10.1111/sms.12784 (2017).
Miller, T., Mull, S., Aragon, A. A., Krieger, J. & Schoenfeld, B. J. Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: A randomized trial. Int. J. Sport Nutr. Exerc. Metab. 28(1), 46–54. https://doi.org/10.1123/ijsnem.2017-0221 (2018).
Benito, P. J. et al. Strength plus endurance training and individualized diet reduce fat mass in overweight subjects: A randomized clinical trial. Int. J. Environ. Res. Public Health 17(7), 2596. https://doi.org/10.3390/ijerph17072596 (2020).
Kotarsky, C. J. et al. Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol. Rep. 9(10), e14868. https://doi.org/10.14814/phy2.14868 (2021).
Willis, L. H. et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol. 113(12), 1831–1837. https://doi.org/10.1152/japplphysiol.01370.2011 (2012).
Collins, H., Fawkner, S., Booth, J. N. & Duncan, A. The effect of resistance training interventions on weight status in youth: A meta-analysis. Sports Med. Open 4, 41. https://doi.org/10.1186/s40798-018-0154-z (2018).
Carroll, T. J., Riek, S. & Carson, R. G. Neural adaptations to resistance training: Implications for movement control. Sports Med. 31, 829–840. https://doi.org/10.2165/00007256-200131120-00001 (2001).
Grgic, J. et al. Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sports Med. 48, 1207–1220. https://doi.org/10.1007/s40279-018-0872-x (2018).
Turner, A. N. & Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 32, 87–99. https://doi.org/10.1519/SSC.0b013e3181e928f9 (2010).
Grgic, J., Schoenfeld, B. J. & Mikulic, P. Effects of plyometric vs resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 10, 530–536. https://doi.org/10.1016/j.jshs.2020.06.010 (2020).
De Ste Croix, M. B., Deighan, M. A. & Armstrong, N. Assessment and interpretation of isokinetic muscular strength during growth and maturation. Sports Med. 33, 727–743. https://doi.org/10.2165/00007256-200333100-00002 (2003).
Radnor, J. M., Oliver, J. L., Waugh, C. M., Myer, G. D. & Lloyd, R. S. The influence of maturity status on muscle architecture in school-aged boys. Pediatr. Exerc. Sci. 32, 89–96. https://doi.org/10.1123/pes.2019-0201 (2020).
Peterson, M. D., Rhea, M. R., Sen, A. & Gordon, P. M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 9(3), 226–237 (2010).
Myers, J., Kokkinos, P. & Nyelin, E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients 11, 1652. https://doi.org/10.3390/nu11071652 (2019).
Lindgren, M. & Börjesson, M. The importance of physical activity and cardiorespiratory fitness for patients with heart failure. Diabetes Res. Clin. Pract. 176, 108833. https://doi.org/10.1016/j.diabres.2021.108833 (2021).
Azmi, N. A., Zaki, N. T. A., Kong, M. C., Ab Rahman, N. N. A. & Zanudin, A. Correlation of physical activity level with physical fitness and respiratory function amongst undergraduates. Trends Sci. 18, 24. https://doi.org/10.48048/tis.2021.24 (2021).
Lum, D., Barbosa, T. M., Aziz, A. R. & Balasekaran, G. Effects of isometric strength and plyometric training on running performance: A randomized controlled study. Res. Q. Exerc. Sport 94, 263–271. https://doi.org/10.1080/02701367.2021.1969330 (2023).
Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American Heart Association. Circulation 134, e653–e699. https://doi.org/10.1161/CIR.0000000000000461 (2016).
Green, S. & Askew, C. VO2peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. J. Appl. Physiol. 125(1), 229–232. https://doi.org/10.1152/japplphysiol.00850.2017 (2018).
Buga, S. & Gencer, Y. G. The effect of plyometric training performed on different surfaces on some performance parameters. Prog. Nutr. 24, e2022072. https://doi.org/10.23751/pn.v24iS1.13014 (2022).
Ramirez-Campillo, R. et al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 29, 1317–1328. https://doi.org/10.1519/JSC.0000000000000762 (2015).
Berryman, N., Maurel, D. & Bosquet, L. Effect of plyometric vs dynamic weight training on the energy cost of running. J. Strength Cond. Res. 24(7), 1818–1825. https://doi.org/10.1519/JSC.0b013e3181def1f5 (2010).
Gibala, M. J., Gillen, J. B. & Percival, M. E. Physiological and health-related adaptations to low-volume interval training: Influences of nutrition and sex. Sports Med. 44, 127–137. https://doi.org/10.1007/s40279-014-0259-6 (2014).
Gidlund, E. K. Exercise and the mitochondria. In Cardiorespiratory Fitness in Cardiometabolic Diseases (eds Kokkinos, P. & Narayan, P.) (Springer, 2019).
Lin, X. et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 4(7), e002014. https://doi.org/10.1161/JAHA.115.002014 (2015).
Thompson, D. L. Fitness focus copy-and-share: Flexibility. ACSMs Health Fit J. 12, 5. https://doi.org/10.1249/FIT.0b013e318184516b (2008).
Ayala, F., de Baranda, P. S., Croix, M. D. S. & Santonja, F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys. Ther. Sport 12(4), 175–181. https://doi.org/10.1016/j.ptsp.2011.02.005 (2011).
Ramírez-delaCruz, M., Bravo-Sánchez, A., Esteban-García, P., Jiménez, F. & Abián-Vicén, J. Effects of plyometric training on lower body muscle architecture, tendon structure, stiffness and physical performance: A systematic review and meta-analysis. Sports Med.-Open 8, 40. https://doi.org/10.1186/s40798-022-00431-0 (2022).
de Villarreal, E. S., Molina, J. G., de Castro-Maqueda, G. & Gutiérrez-Manzanedo, J. V. Effects of plyometric, strength and change of direction training on high-school basketball player’s physical fitness. J. Hum. Kinet. 78, 175–186. https://doi.org/10.2478/hukin-2021-0036 (2021).
da Silva, N. V. F. et al. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J. Phys. Ther. Sci. 29, 783–788. https://doi.org/10.1589/jpts.29.783 (2017).
Deng, N. et al. Effects of combined upper and lower limb plyometric training interventions on physical fitness in athletes: A systematic review with meta-analysis. Int. J. Environ. Res. Public Health 20, 482. https://doi.org/10.3390/ijerph20010482 (2023).
Kell, R. T., Bell, G. & Quinney, A. Musculoskeletal fitness, health outcomes and quality of life. Sports Med. 31, 863–873. https://doi.org/10.2165/00007256-200131120-00003 (2001).
Ambegaonkar, J. P., Caswell, S. V., Winchester, J. B., Caswell, A. A. & Andre, M. J. Upper-body muscular endurance in female university-level modern dancers: A pilot study. J. Dance Med. Sci. 16, 3–7. https://doi.org/10.1177/1089313X1201600101 (2012).
Bianco, A. et al. The sit up test to exhaustion as a test for muscular endurance evaluation. Springerplus 4, 309. https://doi.org/10.1186/s40064-015-1023-6 (2015).
Ford, P. et al. Participant development in sport and physical activity: The impact of biological maturation. Eur. J. Sport Sci. 12, 515–526. https://doi.org/10.1080/17461391.2011.577241 (2012).
Ramirez-Campillo, R. et al. Effects of plyometric jump training on vertical jump height of volleyball players: A systematic review with meta-analysis of randomized-controlled trial. J. Sports Sci. Med. 19, 489–499. https://doi.org/10.25932/publishup-52589 (2020).